Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes
نویسندگان
چکیده
The results of large-scale molecular dynamics simulations demonstrate that the mechanisms responsible for material ejection as well as most of the parameters of the ejection process have a strong dependence on the rate of the laser energy deposition. For longer laser pulses, in the regime of thermal confinement, a phase explosion of the overheated material is responsible for the collective material ejection at laser fluences above the ablation threshold. This phase explosion leads to a homogeneous decomposition of the expanding plume into a mixture of liquid droplets and gas phase molecules. The decomposition proceeds through the formation of a transient structure of interconnected liquid clusters and individual molecules and leads to the fast cooling of the ejected plume. For shorter laser pulses, in the regime of stress confinement, a lower threshold fluence for the onset of ablation is observed and attributed to photomechanical effects driven by the relaxation of the laser-induced pressure. Larger and more numerous clusters with higher ejection velocities are produced in the regime of stress confinement as compared to the regime of thermal confinement. For monomer molecules, the ejection in the stress confinement regime results in broader velocity distributions in the direction normal to the irradiated surface, higher maximum velocities, and stronger forward peaking of the angular distributions. The acoustic waves propagating from the absorption region are much stronger in the regime of stress confinement and the wave profiles can be related to the ejection mechanisms. © 2000 American Institute of Physics. @S0021-8979~00!03715-4#
منابع مشابه
The role of inertial and spatial confinement in laser interaction with organic materials
Short-pulse laser irradiation of organic material performed under conditions of inertial or spatial confinement can result in laser damage or material ejection (ablation) at relatively low laser fluences. A computational investigation of the mechanisms of the efficient transformation of the deposited laser energy into the energy of material ejection is used in this work to discuss a number of p...
متن کاملMechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration
The effect of the initial sample temperature and laser pulse duration on the mechanisms of molecular ejection from an irradiated molecular solid is investigated by largescale molecular dynamics simulations. The results of simulations performed for two initial temperatures are found to be consistent with the notion of two distinct regimes of molecular ejection separated by a threshold fluence. A...
متن کاملStudy of laser ablation using nano-second laser pulses
In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...
متن کاملMolecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids
Two distinct regimes of molecular ejection separated by a well-defined threshold fluence are observed in molecular dynamics simulation of pulsed laser irradiation of an organic solid. At fluences above the threshold a collective multilayer ejection or ablation occurs where large liquid droplets are ejected and the total yield of the ablated material follows a critical volume density of the depo...
متن کاملMicroscopic mechanisms of short pulse laser spallation of molecular solids
The mechanisms of photomechanical spallation are investigated in a large-scale MD simulation of laser interaction with a molecular target performed in an irradiation regime of inertial stress confinement. The relaxation of laser-induced thermoelastic stresses is found to be responsible for the nucleation, growth, and coalescence of voids in a broad sub-surface region of the irradiated target. T...
متن کامل